Brain vasotocin pathways and the control of sexual behaviors in the bullfrog.

نویسنده

  • S K Boyd
چکیده

The neurohypophysial peptide arginine vasotocin (AVT) alters the display of several sexually dimorphic behaviors in the bullfrog (Rana catesbeiana). These behaviors include mate calling, release calling, call phonotaxis, and locomotor activity. Populations of AVT-immunoreactive cells are present in six areas of bullfrog brain and fibers are widespread. Neural areas involved in vocalization, in particular, contain AVT cells and fibers. As well, AVT concentrations in a subset of brain areas are sexually dimorphic and steroid sensitive. Effects of gonadectomy and gonadal steroid treatment vary, depending on the brain area and sex of the frog. For example, some anterior areas are sensitive to changes in both dihydrotestosterone (DHT) and estradiol. In some posterior brain areas, on the other hand, AVT levels are affected only by DHT. A similar situation exists for putative AVT receptors in bullfrogs. Receptors are widespread, occurring in many areas that have been linked to behavior. Receptor concentrations are sexually dimorphic in the amygdala pars lateralis, hypothalamus, pretrigeminal nucleus, and dorsolateral nucleus. Estradiol alters AVT receptor level in the amygdala of both sexes of bullfrog and both estradiol and DHT alter the receptor number in the pretrigeminal nucleus, but only in males. The mechanisms responsible for steroid effects on vasotocin neurons and their targets are unknown. Specific AVT cells, fiber terminal fields, and receptor populations are likely influenced by gonadal steroids for effective timing of individual behaviors displayed by bullfrogs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Historical perspective: Hormonal regulation of behaviors in amphibians.

This review focuses on research into the hormonal control of behaviors in amphibians that was conducted prior to the 21st century. Most advances in this field come from studies of a limited number of species and investigations into the hormonal mechanisms that regulate reproductive behaviors in male frogs and salamanders. From this earlier research, we highlight five main generalizations or con...

متن کامل

Ventrolateral Preoptic Nucleus of Hypothalamus; A Possible Target for Deep Brain Stimulation for Treatment of Sexual Dysfunction

Sexual function and orientation is a complex platform of human personality which is being modulated by several brain circuities which is less understood currently. Recently, several studies have demonstrated interesting results regarding the role of several brain locations in sexual behaviors and orientation. Sexual arousal in homosexual men are associated with activation of the left angular gy...

متن کامل

The Effectiveness of Project RESPECT in Reducing Sexual Risk Behaviors of Male-to-Female Transgender Patients

Objective: The purpose of the present study was to determine the effectiveness of Project RESPECT in reducing sexual risk behaviors of male to female transgender patients. Methods: In an interventional, quasi-experimental and case-control study, 30 transgenderpatients (male to female) with high-risk sexual behaviors were selected and divided into two experimental and control groups. Transgen...

متن کامل

Social and neural modulation of sexual plasticity in teleost fish.

Teleost fishes are the 'champions' of sexual plasticity among vertebrates. Several species have two male reproductive morphs with distinct suites of behavioral, somatic, neuronal, endocrinological, and life history traits. Here, we consider recent studies of the social and neural modulation of sexual plasticity for such species with a focus on two neuropeptides, gonadotropin releasing hormone (...

متن کامل

Examining the Role of Vasopressin in the Modulation of Parental and Sexual Behaviors

Vasopressin (VP) and VP-like neuropeptides are evolutionarily stable peptides found in all vertebrate species. In non-mammalian vertebrates, vasotocin (VT) plays a role similar to mammalian VP, whereas mesotocin and isotocin are functionally similar to mammalian oxytocin (OT). Here, we review the involvement of VP in brain circuits, synaptic plasticity, evolution, and function, highlighting the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research bulletin

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 1997